Семинарское занятие 7 (MATLAB)
Тема: SVM (Linear / RBF), подбор гиперпараметров C и γ (KernelScale).
Цель занятия
1) Обучить линейный SVM и SVM с RBF-ядром.
2) Понять влияние параметров C (BoxConstraint) и γ (KernelScale) на переобучение/обобщение.
3) Настроить гиперпараметры через grid search + cross-validation.
4) Сравнить модели по confusion matrix и метрикам (Accuracy, Precision, Recall, F1, ROC-AUC для бинарного случая).
Входные данные
Рекомендуется бинарный датасет (2 класса):
A) cancer_dataset (если доступен).
B) Любой CSV с метками 0/1 (например OK/Defect).

Важно: выполнить стандартизацию признаков по train (без утечки).
Задание
1. Загрузить данные X (N×d) и y (0/1).
2. Сделать train/validation/test split (60/20/20) со стратификацией и фиксированным seed.
3. Стандартизовать признаки (z-score) по train и применить к val/test.
4. Обучить Linear SVM (KernelFunction="linear") и оценить на test.
5. Обучить RBF SVM с базовыми параметрами и оценить на test.
6. Настроить RBF SVM: выполнить grid search по BoxConstraint (C) и KernelScale (связан с γ). Выбрать лучшую комбинацию по 5-fold CV на train (или по validation).
7. Для лучшей модели построить confusion matrix, посчитать метрики и ROC-AUC.
8. Сравнить Linear vs RBF (с лучшими параметрами) и сделать вывод (5–8 строк).
Что сдавать
1) MATLAB-скрипт: Seminar7_SVM_Linear_RBF_Tuning.m
2) Отчёт 1–2 страницы: таблица метрик, confusion matrix, ROC, heatmap качества по сетке (C×KernelScale), вывод.
3) (Опционально) файл .mat с лучшей моделью и гиперпараметрами.
Критерии оценивания (макс. 15 баллов)
• Корректный split + стандартизация без утечки — 4 б.
• Linear SVM обучен и проверен — 2 б.
• RBF SVM обучен и проверен — 2 б.
• Grid search + выбор лучших C и γ (KernelScale) — 5 б.
• Анализ результатов (confusion matrix + вывод) — 2 б.
Бонус +2 б: сравнить GridSearch vs Bayesian optimization (OptimizeHyperparameters).
Шаблон кода MATLAB (копируйте и запускайте)
%% Seminar 7: SVM (Linear/RBF) + Hyperparameter Tuning (C, gamma)
rng(42);

%% 1) Данные (пример: cancer_dataset)
try
    load cancer_dataset
    X = X';              % 699x9
    y = double(T(2,:)'); % 0/1
catch
    % Свой датасет:
    % T = readtable("data.csv");
    % y = double(categorical(T.Label) == categorical("Defect")); % пример
    % X = table2array(T(:, setdiff(T.Properties.VariableNames, {'Label'})));
    error("Подключите свой CSV в блоке catch.");
end

yCat = categorical(y);

%% 2) Train/Val/Test split 60/20/20 (стратификация)
cv1 = cvpartition(yCat,'Holdout',0.4);
idxTr = training(cv1);
idxTmp = test(cv1);

Xtr = X(idxTr,:);  ytr = y(idxTr);  ytrCat = yCat(idxTr);
Xtmp = X(idxTmp,:); ytmp = y(idxTmp); ytmpCat = yCat(idxTmp);

cv2 = cvpartition(ytmpCat,'Holdout',0.5);
idxVal = training(cv2);
idxTe  = test(cv2);

Xval = Xtmp(idxVal,:);  yval = ytmp(idxVal);  yvalCat = ytmpCat(idxVal);
Xte  = Xtmp(idxTe,:);   yte  = ytmp(idxTe);   yteCat  = ytmpCat(idxTe);

%% 3) Стандартизация по TRAIN (без утечки)
mu = mean(Xtr,1);
sigma = std(Xtr,0,1); sigma(sigma==0)=1;

XtrN  = (Xtr  - mu) ./ sigma;
XvalN = (Xval - mu) ./ sigma;
XteN  = (Xte  - mu) ./ sigma;

%% 4) Linear SVM (baseline)
mdlLin = fitcsvm(XtrN, ytrCat, 'KernelFunction','linear', ...
    'BoxConstraint', 1, 'Standardize', false);   % мы уже стандартизовали вручную
mdlLin = fitPosterior(mdlLin);   % для score/вероятностей

[yhatLin, scoreLin] = predict(mdlLin, XteN);
scoreLin = getPosScore(mdlLin, scoreLin);

%% 5) RBF SVM (baseline)
mdlRBF0 = fitcsvm(XtrN, ytrCat, 'KernelFunction','rbf', ...
    'BoxConstraint', 1, 'KernelScale', 1, 'Standardize', false);
mdlRBF0 = fitPosterior(mdlRBF0);

[yhatRBF0, scoreRBF0] = predict(mdlRBF0, XteN);
scoreRBF0 = getPosScore(mdlRBF0, scoreRBF0);

%% 6) Grid Search по C и KernelScale
Cgrid = logspace(-2, 3, 7);           % C = 1e-2 ... 1e3
KSgrid = logspace(-2, 2, 6);          % KernelScale (≈ 1/sqrt(2γ)) в MATLAB

cvLoss = zeros(numel(Cgrid), numel(KSgrid));

for i = 1:numel(Cgrid)
    for j = 1:numel(KSgrid)
        mdl = fitcsvm(XtrN, ytrCat, 'KernelFunction','rbf', ...
            'BoxConstraint', Cgrid(i), 'KernelScale', KSgrid(j), 'Standardize', false);
        cvMdl = crossval(mdl, 'KFold', 5);
        cvLoss(i,j) = kfoldLoss(cvMdl);   % 0-1 loss
    end
end

% Лучшая комбинация
[minLoss, idx] = min(cvLoss(:));
[iBest, jBest] = ind2sub(size(cvLoss), idx);
bestC = Cgrid(iBest);
bestKS = KSgrid(jBest);

fprintf('Best (by 5-fold CV loss): C=%.3g | KernelScale=%.3g | Loss=%.3f\n', bestC, bestKS, minLoss);

% Визуализация heatmap (чем ниже loss, тем лучше)
figure;
imagesc(log10(KSgrid), log10(Cgrid), cvLoss);
colorbar; xlabel('log10(KernelScale)'); ylabel('log10(C)');
title('Grid Search: 5-fold CV Loss (RBF SVM)');
set(gca,'YDir','normal');

%% 7) Обучение лучшего RBF SVM и оценка на TEST
mdlRBF = fitcsvm(XtrN, ytrCat, 'KernelFunction','rbf', ...
    'BoxConstraint', bestC, 'KernelScale', bestKS, 'Standardize', false);
mdlRBF = fitPosterior(mdlRBF);

[yhatRBF, scoreRBF] = predict(mdlRBF, XteN);
scoreRBF = getPosScore(mdlRBF, scoreRBF);

%% 8) Метрики и ROC-AUC
fprintf('\n=== TEST METRICS ===\n');
report("Linear SVM", yte, yteCat, yhatLin,  scoreLin);
report("RBF SVM (baseline)", yte, yteCat, yhatRBF0, scoreRBF0);
report("RBF SVM (tuned)", yte, yteCat, yhatRBF,  scoreRBF);

%% ===== ФУНКЦИИ =====
function s = getPosScore(mdl, score)
posClass = categorical(1);
% Для бинарного fitcsvm после fitPosterior обычно отдаёт 2 колонки
if size(score,2) == 2
    posIdx = find(mdl.ClassNames == posClass);
    s = score(:, posIdx);
else
    s = score(:);
end
end

function report(name, yNum, yCat, yhatCat, scorePos)
CM = confusionmat(yCat, yhatCat, 'Order', [categorical(0) categorical(1)]);
TN = CM(1,1); FP = CM(1,2);
FN = CM(2,1); TP = CM(2,2);

acc  = (TP+TN)/max(sum(CM(:)),1);
prec = TP/max(TP+FP,1);
rec  = TP/max(TP+FN,1);
f1   = 2*prec*rec/max(prec+rec,1e-12);

[~,~,~,AUC] = perfcurve(yNum, scorePos, 1);

fprintf('%s | Acc=%.3f Prec=%.3f Rec=%.3f F1=%.3f AUC=%.3f\n', name, acc, prec, rec, f1, AUC);

figure; confusionchart(yCat, yhatCat);
title([name ' : Confusion Matrix (Test)']);

figure; [Xroc,Yroc,~,~] = perfcurve(yNum, scorePos, 1);
plot(Xroc,Yroc); grid on; xlabel('FPR'); ylabel('TPR');
title(sprintf('%s : ROC (AUC=%.3f)', name, AUC));
end

Примечания
• В MATLAB параметр γ напрямую не задаётся: для RBF используется KernelScale. Связь: γ ≈ 1/(2·KernelScale²).
• Чем больше C и γ (меньше KernelScale), тем выше риск переобучения.
• Если классы несбалансированы, дополнительно сравните PR-кривую и F1.
